CGC Bibliography Paper 5721

Analysis of the catalytic and binding residues of the diadenosine tetraphosphate pyrophosphohydrolase from Caenorhabditis elegans by site-directed mutagenesis.

Abdelghany HM, Bailey S, Blackburn GM, Rafferty JB, McLennan AG

Medline:
12475970
Citation:
Journal of Biological Chemistry 278: 4435-4439 2003
Type:
ARTICLE
Genes:
Abstract:
The contributions to substrate binding and catalysis of 13 amino acid residues of the Caenorhabditis elegans diadenosine tetraphosphate pyrophosphohydrolase (Ap(4)A hydrolase) predicted from the crystal structure of an enzyme-inhibitor complex have been investigated by site-directed mutagenesis. Sixteen glutathione S-transferase-Ap(4)A hydrolase fusion proteins were expressed and their k(cat) and K-m values determined after removal of the glutathione S-transferase domain. As expected for a Nudix hydrolase, the wild type k(cat) of 23 s(-1) was reduced by 10(5)-, 10(3)-, and 30-fold, respectively, by replacement of the conserved P-phosphate-binding catalytic residues Glu(56), Glu(52), and Glu(103) by Gln. K-m values were not affected, indicating a lack of importance for substrate binding. In contrast, mutating His(31) to Val or Ala and Lys(83) to Met produced 10- and 16-fold increases in K. compared with the wild type value of 8.8 muM. These residues stabilize the P-1-phosphate. H31V and H31A had a normal kcat but K83M showed a 37-fold reduction in k(cat). Lys(36) also stabilizes the P-1-phosphate and a K36M mutant had a 10-fold reduced kcat but a relatively normal K-m. Thus both Lys(36) and Lys(83) may play a role in catalysis. The previously suggested roles of Tyr(27), His(38), Lys(79), and Lys(81) in stabilizing the P-2 and P-3-phosphates were not confirmed by mutagenesis, indicating the absence of phosphate-specific binding contacts in this region. Also, mutating both Tyr(76) and Tyr(121), which clamp one substrate adenosine moiety between them in the crystal structure, to Ala only increased K-m 4-fold. It is concluded that interactions with the P-1- and P-4-phosphates are minimum and sufficient requirements for substrate binding by this class of enzyme, indicating that