CGC Bibliography Paper 5444

Discrimination between mono- and trimethylated cap structures by two isoforms of Caenorhabditis elegans.

Miyoshi H, Dwyer DS, Keiper BD, Jankowska-Anyszka M, Darzynkiewicz E, Rhoads RE

Medline:
12198170
Citation:
EMBO Journal 21: 4680-4690 2002
Type:
ARTICLE
Genes:
Abstract:
Primitive eukaryotes like Caenorhabditis elegans produce mRNAs capped with either m(7)GTP or m(3)(2,2,7)GTP. Caenorhabditis elegans also expresses five isoforms of the cap-binding protein eIF4E. Some isoforms (e.g. IFE-3) bind to m(7)GTP-Sepharose exclusively, whereas others (e.g. IFE-5) bind to both m(7)GTP- and m(3)(2,2,7)GTP-Sepharose. To examine specificity differences, we devised molecular models of the tertiary structures of IFE-3 and IFE-5, based on the known structure of mouse eIF4E-1. We then substituted amino acid sequences of IFE-5 with homologous sequences from IFE-3. As few as two changes (N64Y/V65L) converted the cap specificity of IFE-5 to essentially that of IFE-3. Molecular dynamics simulations suggested that the width and depth of the cap-binding cavity were larger in IFE-5 than in IFE-3 or the N64Y/V65L variant, supporting a model in which IFE-3 discriminates against m(3)(2,2,7)GTP by steric hindrance. Furthermore, the affinity of IFE-5 (but not IFE-3) for m(3)(2,2,7)GTP was reversibly increased when thiol reagents were removed. This was correlated with the formation of a disulfide bond between Cys-122 and Cys-126. Thus, translation of m(3)(2,2,7)GTP-capped mRNAs may be regulated by intracellular redox state.