CGC Bibliography Paper 5408

Functional conservation of subfamilies of putative UDP-N-acetylgalactosamine: polypeptide N-acetylgalactosaminyltransferases in Drosophila, Caenorhabditis elegans, and mammals.

Schwientek T, Bennett EP, Flores C, Thacker J, Hollmann M, Reis CA, Behrens J, Mandel U, Keck B, Schafer MA, Haselmann K, Zubarev R, Roepstorff P, Burchell JM, Taylor-Papadimitriou J, Hollingsworth MA, Clausen H

Medline:
11925450
Citation:
Journal of Biological Chemistry 277: 22623-22638 2002
Type:
ARTICLE
Genes:
gly-3 gly-4 gly-5 gly-6 gly-7 gly-8 gly-9 gly-10 gly-11
Abstract:
The completed fruit fly genome was found to contain up to 15 putative UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase (GalNAc-transferase) genes. Phylogenetic analysis of the putative catalytic domains of the large GalNAc-transferase enzyme families of Drosophila melanogaster (13 available), Caenorhabditis elegans (9 genes), and mammals (12 genes) indicated that distinct subfamilies of orthologous genes are conserved in each species. In support of this hypothesis, we provide evidence that distinctive functional properties of Drosophila and human GalNAc-transferase isoforms were exhibited by evolutionarily conserved members of two subfamilies (dGalNAc-T1 (l(2)35Aa) and GalNAc-T11; dGalNAc-T2 (CG6394) and GalNAc-T7). dGalNAc-T1 and novel human GalNAc-T11 were shown to encode functional GalNAc-transferases with the same polypeptide acceptor substrate specificity, and dGalNAc-T2 was shown to encode a GalNAc-transferase with similar GalNAc glycopeptide substrate specificity as GalNAc-T7. Previous data suggested that the putative GalNAc-transferase encoded by l(2)35Aa has a lethal phenotype (Flores, C., and Engels, W. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 2964-2969), and this was substantiated by sequencing of three lethal alleles l(2)35AaHG8, l(2)35AaSF12, and l(2)35AaSF32. The finding that subfamilies of GalNAc-transferases with distinct catalytic functions are evolutionarily conserved stresses that GalNAc-transferase isoforms may serve unique biological functions rather than providing functional redundancy, and this is further supported by the lethal phenotype of l(2)35Aa.