CGC Bibliography Paper 3059

Active currents regulate sensitivity and dynamic range in C. elegans neurons.

Goodman MB, Hall DH, Avery L, Lockery SR

Medline:
98240923
Citation:
Neuron 20: 763-772 1998
Type:
ARTICLE
Genes:
Abstract:
Little is known about the physiology of neurons in Caenorhabditis elegans. Using new techniques for in situ patch-clamp recording in C. elegans, we analyzed the electrical properties of an identified sensory neuron (ASER) across four developmental stages and 42 unidentified neurons at one stage. We find that ASER is nearly isopotential and fails to generate classical Na+ action potentials. Rather, ASER displays a high sensitivity to input currents coupled to a depolarization-dependent reduction in sensitivity that may endow ASER with a wide dynamic range. Voltage clamp revealed depolarization-activated K+ and Ca2+ currents that contribute to high sensitivity near the zero-current potential. The depolarization-dependent reduction in sensitivity can be attributed to activation of K+ current at voltages where it dominates the net membrane current. The voltage dependence of membrane current was similar in all neurons examined, suggesting that C. elegans neurons